梳理数据指标体系,这才是最全指南!
数据指标体系是企业衡量业务成效和优化决策的重要工具。在实际工作场景中,传统的AARRR模型或GMV公式可能并不适用,尤其是对于非销售流程。本文通过一个耐用设备企业的售后部门案例,分享了如何梳理和构建一个有效的数据指标体系。
提到数据指标体系,很多人会脱口而出AARRR或者GMV=UV*转化率*客单价。可实际工作场景很复杂,如果是非销售流程,这两套就不管用了,那更常用的指标体系梳理方法是什么呢?今天结合一个具体例子分享一下。
一、案例场景:
某耐用设备企业,售后部门负责回答客户咨询/新品安装/保修3年/3年内主动保养产品/过保修期收费维修等多种服务,还会在服务过程中开展二次销售。售后部门报表原先长这样(如下图):
大家一致认为,这个表数据看似很多,但是太乱了,看不出来个所以然,需要重新梳理指标体系。可是交给数据部门以后,分析师小明同学看得头都大了:
这一堆东西到底是啥跟啥呀!想拆解收入=客户数*客单价,可售后很多服务是不收费的,想拆解AARRR,可客户没有所谓活跃留存,都是一单一单处理需求。到底这个指标该咋梳理??!!
二、梳理业务流程
之所以这位同学会感觉混乱,是因为他被“售后”俩字蒙蔽了眼睛。虽然表面上都归售后部门管,但负责人不同、处理流程不同、收入/费用产生方式不同,因此实际上有好几种分支业务。梳理指标体系第一步,就是理清业务流程,区分清楚不同目标的业务。
第一,解答客户咨询是总部直接管的,上门安装、维修、保养等都是各地网点支持的;解答客户咨询不产生收入,只支付客服人员工资即可。而上门所有工作,除了人工,还有可能产生配件/物料成本,甚至有可能有收入,因此要分开。
第二,安装新设备和主动保养,是售后主动发起的动作。安装是一定要做的,主动保养客户则不一定接受(甚至可能联系不上),所以应该区分两个流程。
第三,客户发起的保养、修理需求,需要单独分类。
第四,在咨询、保养、保修、维修中,都有可能产生二次销售机会,但是又不是100%会有,因此应单独统计在各流程中产生的二次销售线索,之后再看二次销售线索跟进完成情况。
因此梳理业务流程后,主要业务流程如下,基于这个更细化和清晰的流程,可以开始确定指标。
三、明确结果指标
梳理清楚流程后,下一步是确定结果指标。结果指标一般有三类:
- 衡量流程的收入、成本指标
- 衡量流程完成数量(一般看最后一步是啥)
- 衡量流程完成质量(根据流程性质来定)
在第一步梳理中,我们已经清晰了收入、成本指标。这一步重点确认流程的数量与质量。
在本例中,有四类流程,其中:
1、二次销售结果指标最好定。它就是一个销售流程,可以直接把结果指标定为:销售成交商品数,销售线索的转化效率。
2、客户咨询仅仅是回答问题,能完成任务即可。因此可以看接听咨询数量,如果想进一步考核服务质量,可以看客户满意度评分或15秒/30秒接听率。
3、主动作业+保修,均不产生收入,都是基础服务,因此可以看完成工单数量,如果想进一步考核服务质量,可以看客户满意度评分或平均完成时间(越短越好)。
4、维修类会产生收入,但可能有些用户不接受,选择自行修理/找别人修理,因此可以做个二段式考察,第一段考察客户来电后是否及时答复,另一段记录是否能促成用户付费。
当然,这些指标并不是教科书要求,理论上只要有指标反映数量和质量即可,具体的定义可以根据实际情况做增减。比如只考核平均服务时间,可能导致某些用户等待太久,引发投诉。那么就可以增加一个指标:等待超过24小时工单数。这样及时发现及控制问题。
结果指标一般是业务的KPI指标,因此需要与业务确认清楚,明确了以后再推进下一步。
四、设计分类维度
定好了结果指标,可以开始设计分类维度。一个懒省事的设计办法,就是直接按组织架构设计维度,这就有了开头报表中“话务一组、话务二组,A城市服务1组,服务2组”这种维度。
这样的设计,在考核绩效的时候是很清晰的,但是在做分析的时候却没啥用。因为小组名字并不是影响业务的关键。想让指标体系具有一定的分析能力,就得设计一些能解释问题的维度。
比如咨询产品使用情况,可能在新产品推出、老产品升级的时候最多,因此需要增加一个产品维度。产品维度和咨询量指标结合,就能看出新品关注度与常见问题。
比如安装任务,和产品销量有很大关系,并且安装需要分地区执行,因此需要增加城市维度,并且配合当地新品销量数量指标使用(不需要销售金额,安装以设备台数算工作量)。
比如旧品保修,和当地旧品保有量+达到一定年份的旧品数量有关。因此需要设计一个旧品使用年限维度,结合旧品数量,来观察保修/维修需求变化。
这样设计分类维度,不仅给出了具体维度,而且给出了分类维度结合哪些指标,可以读出业务含义。这么做能极大提高分析效率。
文章开头“流水账”式报表,就没有做清晰的区分,一股脑把所有维度和所有指标交叉结果丢出来,除了提供大量冗余数据搞得人头昏脑胀以外,没啥作用。设计维度要考虑和哪些指标交叉使用,是个重要的设计原则。
五、增加过程指标
清晰了结果指标与分类维度后,可以适当增加过程指标。之所以最后梳理过程指标,是为了帮助看报表和做报表的人清晰重点,避免一上来就铺了一地各种指标,陷在数据细节里无法自拔。并且过程指标不见得都有数据记录,因此要先做结果指标,再看过程细节。
梳理过程指标的时候,可以沿着业务流程,把每一个结果指标产生过程展示出来,比如:
- 主动保养,分为:联系客户→确认时间→上门服务→服务完成四步
- 二次销售,分为:线索跟进→确认需求→收费→配套安装四步
- 保修,分为:接受需求→确认资格→上门检查→配件调拨→完成服务五步
诸如此类,沿着流程逐一梳理,就能得到过程指标。
注意!在销售/获客场景中,每多一步都会流失一些用户,因此转化过程形似漏斗。但是在售后场景则不同,保养、保修等过程,客户提了需求一般都会完成,过程流失不是考察重点,此时考察的重点是过程消耗的时间,尽可能减少时间消耗,减少客户等待才是重点。在梳理指标体系的时候,需要清晰标注前后过程指标的关系,便于他人理解和使用。
在梳理过程指标的时候,有可能有些步骤缺少数字化工具,没法采集到数据,这时候就只能先空着,等有工具采集数据再说,过程指标有可能得逐步丰富。
六、小结
梳理指标体系,包括四步:
- 梳理业务流程
- 明确结果指标
- 设计分类维度
- 增加过程指标
梳理指标体系的过程,本质是站在数据角度理解业务,用数据描述业务的过程,因此要紧密练习业务实际,才可以做出适合工作的指标体系。
本文由运营派作者【接地气的陈老师】,微信公众号:【接地气的陈老师】,原创/授权 发布于运营派,未经许可,禁止转载。
题图来自 Unsplash,基于 CC0 协议。
看完这篇文章,我对这个话题有了更全面的了解,作者的分析很有逻辑,很有说服力。
思路清晰
降低期望,把手机关掉,焦虑就没有了。
文章写得很有见地,作者的思考很深入,值得学习。