在数据分析的道路上,许多新手常常困惑于如何进阶。本文将揭示数据分析师进阶的三大关键,并具体指导如何实施这些策略,帮助数据分析师在职业生涯中迈出坚实的一步,实现个人成长和业务价值的双赢。

“到底咋样算进阶?”是很多做数据的新人同学在知识星球里经常提出的问题。

网上的文章铺天盖地的都是“如何入门”,“快速入门”一类。可真正做上数据分析以后才发现:根本学的就是个屁。每天都在跑数,真正的算法工作离自己一万多里。所以到底前途是啥?

以上诸多疑虑,症结核心,在于:网上的文章大多基于课本来写。因为书本上都是第一章讲pycharm,anaconda,第二章讲pandas,第三章讲matplotlib,第四章讲numpy,第五章讲sklearn。

所以作者们想当然地以为做数据分析就是第一步安装软件,第二步取数,第三步可视化,第四步机器学习模型,第五步业务跪倒在自己脚下俯首帖耳,说:数据分析真牛逼,快来驱动我……

醒醒了喂!

真正进入公司以后,就会发现,数据分析工作最大问题就是:存在感稀薄。数据驱动业务?那是:老板拿数据驱动业务。至于做数据的自己,在大部分公司就是打杂的。那些产品经理、运营、销售、策划心中,都觉得自己可懂分析了,就差一个跑数的。做数据的你就安心跑数好了。

而且,做业务的尤其喜欢说:“我看朋友圈的数据分析文章,我都会了,可我司数据分析师连大数据精准推荐,这么简单的事都搞不出来,都怪他们!”——做数据的不但工作打杂,还容易背锅。
所以,真在企业里上过班就会明白,想要摆脱窘境,真正要干的就三件事:

  1. 争取独立项目的机会,不当扫厕所的
  2. 清晰工作范围和边界,不背无妄之锅
  3. 展现工作效果与成绩,争取内部认可

有了这三个,才能让自己多立功,少背锅。这三点,才是从等着别人来要数的新手,向独当一面的成熟数据分析师的真正转变。具体怎么干,下边简单说一说。

一、如何争取独立项目

新人在学习阶段,都练习过网上的所谓“项目”,什么泰坦尼克、淘宝购物、某国信用卡之类。真实企业项目和这些网红项目最大区别在于:没人给你安排好做什么。如果干坐着等别人安排,就等着接电话:“这个数据老板要,下班以前要给到”。

想争取项目,一定要做好常规数据需求统计。想要在琐碎、零散、日常的工作中发现机会,靠的是细心的分析,而不是别人的施舍(如下图)。

脱离菜鸟!我是如何成为中级数据分析师的

基于需求统计表,能主动发现:

  • 哪些部门需求多?
  • 哪些需求要的急?
  • 哪些是从0到1起步?
  • 哪些需要复杂分析支持?
  • 哪些能用固定工具承接?
  • 哪些是老板的关注点?

这样就能摆脱遇到事只会傻憨憨问业务,结果被一句“关你屁事”顶回来的尴尬。找到意愿合作的部门,找到有价值的合作项目,都靠这样一点点沉淀,而不是从天上掉下来的。

二、如何清晰工作边界

清晰工作边界就是为了不背锅,没有其他缘由。

要牢记三清原则:

  1. 有数据还是没数据,要分清!
  2. 有标准还是没标准,要分清!
  3. 有方案还是没方案,要分清!

没有数据,无法分析。这是废话,但是恰恰最容易被忽视。在业务眼里,永远是:“我们的数据很大呀,而且都在哪里,就差个人来分析了”——一大坨屎,也是很大。业务是不会去扣数据细节的。事先不做好功课,事后面对一堆脏数据,巧妇难为无米之炊。

没有标准,无法评估。这也是一句废话。但是业务口中,经常是:“我就是要增加销量呀;我就是要提升活跃呀;这是老板说的要做,你管他那么多呢”。看似有目标,实则不具体。这时候如果不主动提醒,事后想再补充。就变成:说业务好,自己就是应声虫,对老板没意义;说业务不好,等着被业务喷死。进退两难。

没有方案,预测不准。这也是一句废话。投100的券和投10元券转化率能一样吗。好文案和差文案转化率能一样吗。脱离业务方案去谈预测、谈走势,都是夸夸奇谈。可偏偏教预测的书本都讲的是数据处理方法,很少讲如何结合实际,因此这一步也经常被忘掉。

脱离菜鸟!我是如何成为中级数据分析师的

以上三原则,是很多新人碰得头破血流以后总结的要点,字字带血。然而这也是新人最容易忘记的点。因为在自学阶段都是对着现成的数据集,现成的背景,现成的书去练,从来没人教怎么具体问题、具体沟通。就容易在干活时出问题。

三、如何展示工作成绩

数据分析的成果,就类似“哥伦布立鸡蛋”的故事——你说出口之前,大家都觉得不可能;你说出口以后,大家都说:我早想到了!这个很简单。所以单纯地在口头报几个数、提几条建议,完全不能证明这是自己的成绩。反而把业务教聪明了,以后的分析需求越来越复杂,越来越难搞。

因此,才有数据成果三标准:

  1. 输出数量可量化
  2. 结果可重复使用
  3. 过程封装看不懂

具体如下图所示:

脱离菜鸟!我是如何成为中级数据分析师的

想实现这三标准,单纯地靠写ppt,做口头汇报是肯定不行的。上数据产品势在必行。但想从零散取数,直接升级到一套完整的数据产品也是不现实的——业务等不了那么久,也不会停下日常工作。因此要有产品升级的意识,逐步地向完整产品过度。

我们积累的技术能力,是在这个场合用的。

在时间、数据质量允许范围内:

1、能做报表的,不用临时取数

2、能上系统的,不用手工报表

4、能上模型的,不用业务规则

5、能固化规则的,不每次跑数

6、能固化标准的,不专题分析

脱离菜鸟!我是如何成为中级数据分析师的

总之一步步升级,手工操作、临时操作、个性化操作越来越少。产品功能越来越丰富,预测精度越来越高,查询速度越来越快,定位问题方法越来越简单,我们的价值就越大。

以上,是从菜鸟到中级的破局思路。啥时候算修炼成功?

往简单说,就是独挡一面。往细了说:

  • 在成果上,中级数据分析师能独立解决问题。
  • 在工作中,中级数据分析师能应对业务的“蠢问题”。
  • 在方法上,中级数据分析师能沉淀经验,而不是到处抄。

具体的表现是:等你在面试或者年终述职的时候,不需要傻憨憨地说:我做了好多分析。而是很清晰的讲出来自己的工作数量、输出产品、分析模型的时候,就算成功了。

然而遗憾的是,很多新人注意不到这些问题。

比起在具体问题上深入讨论,他们更喜欢发牢骚,抱怨自己的公司太low,如果能进入头腾阿这种大厂,肯定是山清水秀,鸟语花香;

比起深入思考业务场景和业务流程,他们更喜欢看“底层逻辑”“核心模型”,并且孜孜不倦的在网上找《国家权威认证方法》。

比起解决问题,他们更喜欢人手一本《21天0基础精通机器学习》,认为学了这个头腾阿的某一家就会看上他了——总之,牢骚太多,细节太少,想进步,肯定很难了。

能独立面对并解决问题以后,我们能探讨一个10人部门以上的,领导级的高级数据分析师需要什么技能了。在成果上,高级的数据分析师不仅要解决问题,更得明白“要做成什么样”主动引导业务发展。

在工作中,本文仅仅探讨了业务犯蠢的时候会怎样,还有一种就是:“不蠢,但是坏!”高级的数据分析师有能力影响决策,就得面对更多坏人,有能力斗智斗勇。

 

作者:接地气的陈老师

微信公众号:接地气的陈老师

本文由 @接地气的陈老师 原创发布于运营派,未经许可,禁止转载。

题图来自 Unsplash,基于CC0协议。

登录后参与评论
给作者一些鼓励吧!
等我一分钟 我去找个夸你的句子
这世上美好的东西不多,牛起来要人命的你就是其一!
不要厉害的这么随意,不然我会觉得我又行了
这就很离谱了,老天爷追着喂饭的主儿~
我要是有这才华,我走路都得横着走!
对你的作品崇拜!
反手就是一个推荐,能量满满!
感谢分享
  1. 文章的结构也很清晰,是一篇不可多得的好文。

  2. 看了这篇文章,下周的培训会素材有了,哈哈哈哈哈

  3. 唉,做运营真的不容易

  4. 降低期望,把手机关掉,焦虑就没有了。

  5. 很实用,似乎马上就可以用在工作中了,感谢作者。

收藏
评论
返回
营销日历11月23日 更多
小雪
1953年扫盲标志被颁布
1920年陈独秀主持起草《中国共产党宣言》
加入圈子
全栈运营交流群
加入
抖音运营交流群
加入
小红书运营交流群
加入
视频号运营交流群
加入